Effect of butanol and salt concentration on solid-state nanopores resistance
نویسندگان
چکیده
The objective of this study was to demonstrate the possibility of using 1-butanol to reliably detect the open-pore current of pyramidal solid-state nanopores produced in silicon wafers. The nanopores were produced through controlled pore formation by neutralizing an etchant (KOH) with a strong acid (HCl). Since nanopores produced by this method are deeper than those made in nanometerthick membranes, they behave as nanochannels. As a consequence, the open-pore current detection is more challenging. Thus, we report that low amounts of butanol considerably aid in the detection of the open-pore current of nanopores. Subjects: Electronic Devices & Materials; Materials Science; Nanoscience & Nanotechnology
منابع مشابه
Probing access resistance of solid-state nanopores with a scanning-probe microscope tip.
An apparatus that integrates solid-state nanopore ionic current measurement with a scanning-probe microscope is developed. When a micrometer-scale scanning-probe tip is near a voltage-biased nanometer-scale pore (10–100 nm), the tip partially blocks the flow of ions to the pore and increases the pore access resistance. The apparatus records the current blockage caused by the probe tip and the l...
متن کاملTranslocation frequency of double-stranded DNA through a solid-state nanopore.
Solid-state nanopores are single-molecule sensors that measure changes in ionic current as charged polymers such as DNA pass through. Here, we present comprehensive experiments on the length, voltage, and salt dependence of the frequency of double-stranded DNA translocations through conical quartz nanopores with mean opening diameter 15 nm. We observe an entropic barrier-limited, length-depende...
متن کاملShort channel effects on electrokinetic energy conversion in solid-state nanopores
The ion selectivity of nanopores due to the wall surface charges is capable of inducing strong coupling between fluidic and ionic motion within the system. This interaction opens up the prospect of operating nanopores as nanoscale devices for electrokinetic energy conversion. However, the very short channel lengths make the ionic movement and fluidics inside the pore to be substantially affecte...
متن کاملPore Characterization and Event Detection in Solid-State Nanopores
Nanopores are used for DNA sensing. Solid-state nanopores, which are milled through a silicon-based substrate, lack the atomic-level gemoetric precision of biological proteinmediated pores. However, they show great promise due to their greater stability and potential for modification. We developed tools to characterize solid-state nanopores by using their resistance to infer a functional diamet...
متن کاملSalt dependence of ion transport and DNA translocation through solid-state nanopores.
We report experimental measurements of the salt dependence of ion transport and DNA translocation through solid-state nanopores. The ionic conductance shows a three-order-of-magnitude decrease with decreasing salt concentrations from 1 M to 1 muM, strongly deviating from bulk linear behavior. The data are described by a model that accounts for a salt-dependent surface charge of the pore. Subseq...
متن کامل